A Moisture-Stratiform Instability for Convectively Coupled Waves

نویسنده

  • Zhiming Kuang
چکیده

A simple model of two vertical modes is constructed and analyzed to reveal the basic instability mechanisms of convectively coupled waves. The main novelty of this model is a convective parameterization based on the quasi-equilibrium concept and simplified for a model of two vertical modes. It hypothesizes 1) the approximate invariance of the difference between saturation moist static energy in the lower half of the troposphere and moist static energy in the subcloud layer, regardless of free troposphere humidity, and 2) that variations in the depth of convection are determined by moisture-deficit variations in the midtroposphere. Physical arguments for such a treatment are presented. For realistic model parameters chosen based on cloud system resolving model simulations (CSRMs) of an earlier study, the model produces unstable waves at wavelengths and with structures that compare well with the CSRM simulations and observations. A moisture–stratiform instability and a direct–stratiform instability are identified as the main instability mechanisms in the model. The former relies on the effect of midtroposphere humidity on the depth of convection. The latter relies on the climatological mean convective heating profile being top heavy, and it is identified to be the same as the stratiform instability mechanism proposed by B. E. Mapes. The moisture– stratiform instability appears to be the main instability mechanism for the convectively coupled wave development in the CSRM simulations. The finite response time of convection has a damping effect on the waves that is stronger at high wavenumbers. The net moistening effect of the second-mode convective heating also damps the waves, but more strongly at low wavenumbers. These effects help to shape the growth rate curve so that the most unstable waves are of a few thousand kilometers in scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models for Stratiform Instability and Convectively Coupled Waves

A simplified intermediate model for analyzing and parameterizing convectively coupled tropical waves is introduced here. This model has two baroclinic modes of vertical structure: a direct heating mode and a stratiform mode. The key essential parameter in these models is the area fraction occupied by deep convection, sc. The unstable convectively coupled waves that emerge from perturbation of a...

متن کامل

A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part I: Linear Analysis

Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here...

متن کامل

Model multi-cloud parameterizations for convectively coupled waves: Detailed nonlinear wave evolution

Recent observational analysis reveals the central role of three cloud types, congestus, stratiform, and deep-convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating 2-day waves, and the Madden–Julian oscillation. Recently, a systematic model convective parametrization highlighting the dynamic role of the three cloud types has been develo...

متن کامل

A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part II: Nonlinear Simulations

Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convectiv...

متن کامل

Structure of AGCM-Simulated Convectively Coupled Kelvin Waves and Sensitivity to Convective Parameterization

A study of the convectively coupled Kelvin wave (CCKW) properties from a series of atmospheric general circulation model experiments over observed sea surface temperatures is presented. The simulations are performed with two different convection schemes (a mass flux scheme and a moisture convergence scheme) using a range of convective triggers, which inhibit convection in different ways. Increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007